7 research outputs found

    Hamster models of COVID-19 pneumonia reviewed: How human can they be?

    Get PDF
    The dramatic global consequences of the coronavirus disease 2019 (COVID-19) pandemic soon fueled quests for a suitable model that would facilitate the development and testing of therapies and vaccines. In contrast to other rodents, hamsters are naturally susceptible to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the Syrian hamster (Mesocricetus auratus) rapidly developed into a popular model. It recapitulates many characteristic features as seen in patients with a moderate, self-limiting course of the disease such as specific patterns of respiratory tract inflammation, vascular endothelialitis, and age dependence. Among 4 other hamster species examined, the Roborovski dwarf hamster (Phodopus roborovskii) more closely mimics the disease in highly susceptible patients with frequent lethal outcome, including devastating diffuse alveolar damage and coagulopathy. Thus, different hamster species are available to mimic different courses of the wide spectrum of COVID-19 manifestations in humans. On the other hand, fewer diagnostic tools and information on immune functions and molecular pathways are available than in mice, which limits mechanistic studies and inference to humans in several aspects. Still, under pandemic conditions with high pressure on progress in both basic and clinically oriented research, the Syrian hamster has turned into the leading non-transgenic model at an unprecedented pace, currently used in innumerable studies that all aim to combat the impact of the virus with its new variants of concern. As in other models, its strength rests upon a solid understanding of its similarities to and differences from the human disease, which we review here

    Deciphering the Role of Humoral and Cellular Immune Responses in Different COVID-19 Vaccines - A Comparison of Vaccine Candidate Genes in Roborovski Dwarf Hamsters

    Get PDF
    With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design

    Human alveolar progenitors generate dual lineage bronchioalveolar organoids

    Get PDF
    Mechanisms of epithelial renewal in the alveolar compartment remain incompletely understood. To this end, we aimed to characterize alveolar progenitors. Single-cell RNA-sequencing (scRNA-seq) analysis of the HTII-280+/EpCAM+ population from adult human lung revealed subclusters enriched for adult stem cell signature (ASCS) genes. We found that alveolar progenitors in organoid culture in vitro show phenotypic lineage plasticity as they can yield alveolar or bronchial cell-type progeny. The direction of the differentiation is dependent on the presence of the GSK-3β inhibitor, CHIR99021. By RNA-seq profiling of GSK-3β knockdown organoids we identified additional candidate target genes of the inhibitor, among others FOXM1 and EGF. This gives evidence of Wnt pathway independent regulatory mechanisms of alveolar specification. Following influenza A virus (IAV) infection organoids showed a similar response as lung tissue explants which confirms their suitability for studies of sequelae of pathogen-host interaction

    Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding

    Get PDF
    Safe and effective vaccines are urgently needed to stop the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We construct a series of live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and assess their safety and efficacy in Syrian hamsters. Animals were vaccinated with a single dose of the respective recoded virus and challenged 21 days later. Two of the tested viruses do not cause clinical symptoms but are highly immunogenic and induce strong protective immunity. Attenuated viruses replicate efficiently in the upper but not in the lower airways, causing only mild pulmonary histopathology. After challenge, hamsters develop no signs of disease and rapidly clear challenge virus: at no time could infectious virus be recovered from the lungs of infected animals. The ease with which attenuated virus candidates can be produced and administered favors their further development as vaccines to combat the ongoing pandemic

    Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding.

    Get PDF
    Safe and effective vaccines are urgently needed to stop the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We construct a series of live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and assess their safety and efficacy in Syrian hamsters. Animals were vaccinated with a single dose of the respective recoded virus and challenged 21 days later. Two of the tested viruses do not cause clinical symptoms but are highly immunogenic and induce strong protective immunity. Attenuated viruses replicate efficiently in the upper but not in the lower airways, causing only mild pulmonary histopathology. After challenge, hamsters develop no signs of disease and rapidly clear challenge virus: at no time could infectious virus be recovered from the lungs of infected animals. The ease with which attenuated virus candidates can be produced and administered favors their further development as vaccines to combat the ongoing pandemic

    Deciphering the Role of Humoral and Cellular Immune Responses in Different COVID-19 Vaccines—A Comparison of Vaccine Candidate Genes in Roborovski Dwarf Hamsters

    No full text
    With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design
    corecore